
eda-log-file-warning-suppressor
Release 0.9.0

Sep 10, 2023

Contents:

1 Overview 1
1.1 Why ELFWS? . 1
1.2 Key Benefits . 1
1.3 Key Features . 2

2 Installation 3
2.1 PIP . 3
2.2 Git Hub . 3

3 Usage 5
3.1 create . 5
3.2 report . 6
3.3 show . 6
3.4 suppress . 7
3.5 version . 7

4 Evaluating Warnings 9
4.1 Evaluate . 9
4.2 Suppress . 9
4.3 Mitigate . 10
4.4 Investigate . 10

5 Suppression Rules 11
5.1 Warning IDs . 11
5.2 Suppression Rule Fields . 12
5.3 Grouping Rules . 12
5.4 Options . 13

6 Theory of Operation 15
6.1 Read suppression rule file . 15
6.2 Read logfile . 15
6.3 Determine vendor . 15
6.4 Load warning extractor . 16
6.5 Extract warnings from logfile . 16
6.6 Compare suppression rules against extracted warnings . 16
6.7 Report results . 16

i

7 Vendors 17
7.1 Mentor Graphics . 17

7.1.1 Precision . 17
7.1.2 Quasta Lint . 18

7.2 Microsemi . 20
7.2.1 Designer . 20

7.3 Xilinx . 21
7.3.1 Vivado . 21

8 Adding Vendor Tools 23
8.1 Directory Structure . 23

9 Vendor Tool File 25
9.1 imports . 25
9.2 get_vendor . 25
9.3 get_tool_name . 25
9.4 is_logfile . 26
9.5 extract_warnings . 26

10 Contributing 29
10.1 Bug Reports . 29
10.2 Code Base Improvements . 29
10.3 Feature Requests . 29
10.4 New Vendor Warning Suppresssions . 30

11 Indices and tables 31

ii

CHAPTER 1

Overview

EDA Log File Warning Suppressor (ELFWS) provides warning suppression for EDA log files.

1.1 Why ELFWS?

ELFWS was created after trying to triage warnings in the Mentor Graphics Precision and Microsemi Designer tools.
Precision had a built in method to suppress warnings, but only at the warning ID level. There was not enough granu-
larity to allow suppression of individual warnings. Designer does not provide the ability to suppress warnings in their
log file.

I like to run through the synthesis and place and route tools early in the design to discover any issues with IP. This
worked well the first time I went through the design as I found an issue with two PLLs. The issue was fixed and
design continued. When the design was almost completed, I triaged the warnings again and found something new.
This required another change to one of the PLLs.

The new warning was buried with warnings I had previously reviewed. It was difficult to detect by scanning the file.
It wasn’t until I started grepping out those warnings I had seen before that I discovered the new one. If I was able to
properly suppress the warnings I had reviewed before, the new issue would have easily been detected.

I also use Continuous Integration (CI) tools when designing to ensure design quality. Having to manually triage the
warnings each time precludes the use of CI. If ELFWS had existed, the second issue with the PLL would have been
detected much earlier in the design phase.

1.2 Key Benefits

• Provides a common method to suppress warnings

• Suppress warnings on supported EDA vendor tools

• Additional vendor tools can be added

• Reduce warning triage time

1

eda-log-file-warning-suppressor, Release 0.9.0

1.3 Key Features

• Command line tool

• Continuous Integration support

– JUnit XML output of unsuppressed warnings

• Define suppression rules using YAML

• Reports for auditing suppressed warnings

– Warnings not suppressed

– Which warnings were suppressed by which suppression rule

– Suppression rules which did not suppress any warnings

– Warnings suppressed by multiple rules

• Operates on the log file

– Do not need to re-run tool to validate warnings are suppressed

2 Chapter 1. Overview

CHAPTER 2

Installation

There are two methods to install ELFWS.

2.1 PIP

The most recent released version is hosted on PyPI. It can be installed using pip.

pip install elfws

This is the preferred method for installing ELFWS.

2.2 Git Hub

The latest development version can be cloned from the git hub repo.

git clone https://github.com/jeremiah-c-leary/eda-log-file-warning-suppressor.git

Then install using the setup.py file.

python setup.py install

3

eda-log-file-warning-suppressor, Release 0.9.0

4 Chapter 2. Installation

CHAPTER 3

Usage

ELFWS can be invoked using elfws at the command line prompt:

$ elfws
usage: elfws [-h] {create,report,show,suppress,version} ...

Suppresses Warnings in logfiles.

positional arguments:
{create,report,show,suppress,version}
create Create suppression file
report Generate an audit report
show Show warnings in logfiles
suppress Suppresses warnings in logfiles
version Displays ELFWS version information

optional arguments:
-h, --help show this help message and exit

ELFWS has five subcommands: create, report, show, suppress and version.

3.1 create

Use the create subcommand to generate a suppression rule file from a given warning file.

This can be used as a starting point for a suppression file. Care should be taken as the output messages are not
formatted to support regular expressions.

The arguments for the subcommand can be listed using the -h option:

$ elfws create -h
usage: elfws create [-h] [--suppression_file SUPPRESSION_FILE]

log_file output_suppression_file

(continues on next page)

5

eda-log-file-warning-suppressor, Release 0.9.0

(continued from previous page)

positional arguments:
log_file Log file with warnings to extract
output_suppression_file

Suppression file to create

optional arguments:
-h, --help show this help message and exit
--suppression_file SUPPRESSION_FILE

Existing suppression file to filter out existing

3.2 report

Use the report subcommand to generate detailed output of suppression warnings.

The report will show the following information:

• Unsuppressed warnings

• Which suppression rules suppressed which warnings

• Unused suppression rules

• Warnings that were suppressed by multiple suppression rules

• Summary of suppression rules and warnings

The report can be used during reviews to ensure the suppressions are valid.

This command has the option argument –junit, which will output a JUnit XML file. This file can be used with
continuous integration tools to check for new warnings.

The arguments for the subcommand can be listed using the -h option:

$ elfws report -h
usage: elfws report [-h] [--junit JUNIT] log_file suppression_file report_file

positional arguments:
log_file Log file to check for warnings
suppression_file YAML formatted warning suppression file
report_file Output report file

optional arguments:
-h, --help show this help message and exit
--junit JUNIT Generate JUnit XML file JUNIT

3.3 show

Use the show subcommand to list all the warnings in a logfile.

This can be useful when first starting out suppressing warnings and a suppression rule file does not exist.

The arguments for the subcommand can be listed using the -h option:

6 Chapter 3. Usage

eda-log-file-warning-suppressor, Release 0.9.0

$ elfws show -h

usage: elfws show [-h] log_file

positional arguments:
log_file Log file to show warnings

optional arguments:
-h, --help show this help message and exit

3.4 suppress

Use the suppress subcommand to suppress warnings in a logfile.

This can be useful when creating a suppression rule file. It reports the results to the screen and only shows warnings
which have not been suppressed.

The arguments for the subcommand can be listed using the -h option:

$ elfws suppress -h

usage: elfws suppress [-h] log_file suppression_file

positional arguments:
log_file Log file to check for warnings
suppression_file YAML formatted warning suppression file

optional arguments:
-h, --help show this help message and exit

3.5 version

Use the version subcommand to report the installed version of ELFWS.

There are no arguments for this subcommand.

$ elfws version

EDA Log File Warning Suppressor (ELFWS) version 1.0.0

3.4. suppress 7

eda-log-file-warning-suppressor, Release 0.9.0

8 Chapter 3. Usage

CHAPTER 4

Evaluating Warnings

There is a natural process for evaluating warnings. The process follows the diagram below:

warning -> evaluate -+-> suppress
|
+-> mitigate
|
+-> investigate -+-> suppress

|
+-> mitigate

4.1 Evaluate

During the evaluate phase, the warning is reviewed. One of three classifications will be applied: suppress, mitigate or
investigate.

4.2 Suppress

If the warning can be safely ignored, then it can be suppressed.

A justification for suppressing should be given in the comment field of the suppression rule. Giving the justification
documents the reasoning behind suppressing. This communicates the intent for other users and as a reminder to the
author why the warning was suppressed.

The name, or initials, of the person doing the classification should be given in the author field of the suppression rule.
This indicates to other users who to contact if there are questions about the suppression rule.

9

eda-log-file-warning-suppressor, Release 0.9.0

4.3 Mitigate

The warning could point to a real issue in the design. Addressing the issue will lead to the warning no longer being
reported by the tool.

4.4 Investigate

If the warning requires a significant amount of time to evaluate, it falls into the investigate classification. This can
happen for any of the following reasons:

• warnings in vendor IP

• warnings in a part of code base you are unfamiliar with

• warnings requiring someone else to evaluate

Each warning which requires investigation should be tracked. This can be done with a spreadsheet or a dedicated issue
tracking system.

Depending on the result of the investigation, the warning will either be suppressed or must be mitigated.

In ELFWS these types of warnings will be suppressed, but can be tagged with an investigate field in the suppression
rule.

Use the comment field to document questions about the warning to be investigated. The tracking ID can be added to
the comment field.

If the warning under investigation is mitigated, then the suppression rule should be removed from the suppression file.
If the warning under investigation is suppressed, then remove the investigate field and update the comment to indicate
why the warning can be suppressed.

10 Chapter 4. Evaluating Warnings

CHAPTER 5

Suppression Rules

The suppression rules are a YAML formatted file with the following basic form:

suppress:
rules:
<warning_id>:
- msg: Port I_CLK_A not used

comment: This port is not used in this design.
author: jcleary

- msg: Port I_DATA_A not used'
comment: This port is not used in this design.
author: jcleary
investigate : True

<warning_id>:
- msg: Signal fifo_enable is tied high

comment: The FIFO is always enabled in this design to support data throughput.
author: jcleary
options:
- suppress_in_json_if_unmatched

It starts with the suppress key and then a rules key. The rules key contains one or more suppression rules. Each rules
key is further divided into one or more warning ids.

5.1 Warning IDs

Regular expressons are support in warning ids. This allows for another method of grouping suppressions. In the
example below, every ID that starts with Synth- and has flip-flop in the message will be suppressed.

suppress:
rules:
Synth-.*:

- msg: flip-flop

11

eda-log-file-warning-suppressor, Release 0.9.0

5.2 Suppression Rule Fields

Each suppression rule will have the following fields available:

Op-
tion

Re-
quired

Description

msg Yes The message to suppress. This will be a regular a regular expression which will match after the
defined message ID. LSW will prepend a .* to this field.

com-
ment

No While optional, it is strongly recommened to use this field to document why the warning was
suppressed.

author No Document who created the suppression.
inves-
tigate

No Boolean(True/False) indicating the warnings the rule suppresses need further analysis. This
defaults to False.

op-
tions

No A list of options applied to the suppression.

In addition to the standard warning ID, each tool may have warnings without IDs. When processing these warnings,
ELFWS will use a warning ID of no_id.

suppress:
no_id:
msg: Unused port
comment: This port is not used.
author: mpw

<warning_id>:
msg: Port I_CLK not used
comment: This port is not used.
author: jcl

If these unique IDs exist, they are listed in the tool section of this documentation.

5.3 Grouping Rules

It can be helpful to group rules based on some criteria. For example, file names, sections in a log file, design elements
or warning types.

suppress:
<group id>:
rules:

<warning_id>:
- msg: FIFO uses same clock for read and write

Arbitrary levels of groupings are also supported:

suppress:
<group id>:
rules:

<warning_id>:
- msg: FIFO uses same clock for read and write

<group id>:
<group id>:
rules:

<warning_id>:
(continues on next page)

12 Chapter 5. Suppression Rules

eda-log-file-warning-suppressor, Release 0.9.0

(continued from previous page)

- msg: RAM address bits [12:3] are unused
<group id>:

rules:
<warning_id>:
- msg: invalid false path

rules:
<warning_id>:
- msg: UART is blackboxed

rules:
<warning_id>:

- msg: signal fifo_wr is tied high

Dividing suppression rules into groups helps with maintaining the suppress rules. ELFWS flattens all the suppression
rules into a single list.

5.4 Options

Options change the behavior of a suppression.

The following table includes all avialable options:

Option Description
suppress_in_json_if_unmatched The suppression will be suppressed in the json xml file only.

5.4. Options 13

eda-log-file-warning-suppressor, Release 0.9.0

14 Chapter 5. Suppression Rules

CHAPTER 6

Theory of Operation

ELFWS performs the following tasks:

1. Read suppression rule file

2. Read logfile

3. Determine vendor

4. Load warning extractor

5. Extract warnings from logfile

6. Compare suppression rules against extracted warnings a. Mark which rule suppressed a warning

7. Report results

6.1 Read suppression rule file

This reads the YAML file which will create a dictionary.

6.2 Read logfile

This reads the text logfile and stores it as a list of strings.

6.3 Determine vendor

The log file will be interrogated to determine the vendor log file.

15

eda-log-file-warning-suppressor, Release 0.9.0

6.4 Load warning extractor

There are different patterns of warnings depending on the vendor and tool. To support multiple styles, each vendor
and tool will require it’s own warning extractor.

6.5 Extract warnings from logfile

The logfile is parsed using the loaded warning extractor. Any warning discovered will be stored in a list for further
analysis.

6.6 Compare suppression rules against extracted warnings

Each warning will be compared against every suppression rule. If a match is found then that warning will be stored
with the rule. If not match is found then that warning will be stored in an unmatched list.

6.7 Report results

The format of the reporting results will depend on the subcommand chosen. Refer to the subcommand for further
details.

16 Chapter 6. Theory of Operation

CHAPTER 7

Vendors

The following sections contain information about each vendor tool supported by ELFWS.

7.1 Mentor Graphics

7.1.1 Precision

Precision has two warning formats: those with IDs and those without.

Warnings With IDs

Warnings with IDs are identified with the Warning keyword and the ID between colons inside square brackets.

<warning keyword>:[<ID>]: “<filename>”, <linenumber>: <module>: <message>

where:

Item Regular Expression Match
warning keyword ^# Warning
ID [0-9]+
filename \W+
linenumber line\s[0-9]+
module Module\s\W+
message .*$

Warnings Without IDs

Warnings without IDs are identified with the Warning keyword without the ID in square brackets. The message is
considered to be everything after the first colon.

<warning keyword> : <message1> : <message2>

17

eda-log-file-warning-suppressor, Release 0.9.0

where:

Item Regular Expression Match
warning keyword ^Warning
message1 .*
message2 .*$

Extracting Warnings

The fields filename, linenumber, module and message will be combined into a single message.

1. Search for lines starting with # Warning:

2. Extract string from between colons

3. Classify warning

a. As ID if there are no spaces within the extracted string

b. As NO_ID if the there are spaces within the extracted string

4. Save the message

a. Everything after the second colon if the message has an ID

b. Everything after the first colon if the message does not have an ID

7.1.2 Quasta Lint

Questa Lint has a single format for errors, warnings and infos.

<ID>: <message>, Module ‘<module>’, File ‘<filename>’, Line ‘<linenumber>’

where:

Item Regular Expression Match
ID \W+
filename \W+
linenumber \s[0-9]+
module \W+
message .*$

Extracting Warnings

The fields filename, linenumber, module and message will be combined into a single message.

1. Search for line starting with ‘Section 2’ before processing warnings

2. Search for lines starting with ‘Check:’

a. extract ID

3. Search for lines starting with extracted ID

a. create warning

4. Search for a line starting with ‘| Info’

a. Stop searching for

18 Chapter 7. Vendors

eda-log-file-warning-suppressor, Release 0.9.0

Quasta CDC

Questa CDC provides several reports which can be parsed.

cdc_run.log

The cdc_run.log file reports violations, cautions, and evaluations in addition to run time errors and warnings.

CDC Results

This section reports the CDC crossings and whether they are Violations, Cautions, and Evaluations. The reporting is
divided into reporting the number of types of crossings and then the details of the crossing. Only the number of types
of crossings will be reported for Violations, Cautions, and Evaluations.

Message Summary

This section reports errors and warnings encountered while running the tool. There should not be any Errors or
Warnings in this section.

The cdc_detail.rpt file provides the most items to be checked.

Section 1 : Clock Information

The number of inferred clocks should be 0. The following line will be checked:

2. Inferred :(0)

If the number in the parenthesis is not 0, then a warning will be reported.

Section 2 : Reset Information

The number of inferred resets should be 0. The following line will be checked:

2. Inferred :(0)

If the number in the parenthesis is not 0, then a warning will be reported.

Section 3 : CDC Results

This section reports the CDC crossings and whether they are Violations, Cautions, and Evaluations. The reporting is
divided into reporting the number of types of crossings and then the details of the crossing. Only the number of types
of crossings will be reported for Violations, Cautions, and Evaluations.

Section 9 : Design Information

This section reports information about the design. The number of empty modules and unresolved modules should be
0 to ensure a proper analysis.

The following lines will be checked:

Number of Empty Modules = 0 Number of Unresolved Modules = 0

If the number after the equal sign is not 0, then a warning will be reported.

7.1. Mentor Graphics 19

eda-log-file-warning-suppressor, Release 0.9.0

Section 10 : Port Domain Information

This section reports each port and the clock assigned to it. It also reports whether the user defined the clock domain or
if QuestaCDC assigned it.

Each line follows this format:

<Port> <Direction> <Constraints> {<Clock Domain>} <Type>

If <Type> is not “User” then an warning will be reported.

7.2 Microsemi

7.2.1 Designer

Designer has two different warning formats: those with ID’s and those without. Warning messages can also span
multiple lines.

Warnings With IDs

Warnings with IDs are identified with the Warning keyword and the ID between colons. The message is after the
second colon.

<warning keyword> : <ID> : <message>

where:

Item Regular Expression Match
warning keyword ^Warning
ID \W+
message .*$

Warnings Without IDs

Warnings without IDs are identified with the Warning keyword and colon. The message is after the colon.

<warning keyword> : <message>

where:

Item Regular Expression Match
warning keyword ^Warning
message .*$

Multiline Warnings

Multiline warnings can span any number of lines. They are identified with at least on space at the beginning of the line
for each line after the initial warning line.

<warning keyword> : <ID> : <message1> <warning continuation><message2> <warning continuation><message3>

where:

20 Chapter 7. Vendors

eda-log-file-warning-suppressor, Release 0.9.0

Item Regular Expression Match
warning keyword ^Warning
ID \W+
message1 .*$
warning continuation ^s+
message2 .*$
message3 .*$

..or

<warning keyword> : <message1> <warning continuation><message2> <warning continuation><message3>

where:

Item Regular Expression Match
warning keyword ^Warning
message1 .*$
warning continuation ^s+
message2 .*$
message3 .*$

Extracting Warnings

Extraction of warnings from the logfile will follow this process:

1. Search for lines starting with Warning

2. Classify warning

a. As ID if ID pattern matches

b. As no_id if ID pattern does not match

3. Check successive lines for line beginning with spaces

a. append line to existing message

7.3 Xilinx

7.3.1 Vivado

Vivado has a single warning format, but two different type of warnings: critical warnings and non critical warnings.
Some warning messages can also span multiple lines.

Critical Warnings

Warnings with IDs are identified with the Warning keyword and the ID between colons. The message is after the
second colon.

<warning keyword>: [<ID>] <message>

where:

7.3. Xilinx 21

eda-log-file-warning-suppressor, Release 0.9.0

Item Regular Expression Match
warning keyword ^CRITICAL WARNING
ID \W+sW+
message .*$

Non Critical Warnings

Non critical warnings are identical to critical warnings except the keyword.

<warning keyword>: [<ID>] <message>

where:

Item Regular Expression Match
warning keyword ^WARNING
ID \W+sW+
message .*$

Multiline Warnings

Multiline warnings can span any number of lines. They are identified with at least on space at the beginning of the line
for each line after the initial warning line.

<warning keyword>: [<ID>] <message1> <warning continuation><message2> <warning continuation><message3>

where:

Item Regular Expression Match
warning keyword ^[WARNING|CRITICAL WARNING]
ID \W+sW+
message1 .*$
warning continuation ^s+
message2 .*$
message3 .*$

Extracting Warnings

Extraction of warnings from the logfile will follow this process:

1. Search for lines starting with WARNING or CRITICAL WARNING

2. Extract ID and message

3. Check successive lines for line beginning with spaces

a. append line to existing message

22 Chapter 7. Vendors

CHAPTER 8

Adding Vendor Tools

To add a new vendor tool, you must understand the ELFWS vendor directory structure.

8.1 Directory Structure

ELFWS uses the following directory structure for vendors and their tools:

elfws
|
+-- vendor

|
+-- <vendor name>

|
+-- <tool_name>.py

For example, for our example the tools Microsemi Designer and Mentor Graphics Precision are in this directory
structure:

elfws
|
+-- vendor

|
+-- mentor_graphics
| |
| +-- precision.py
|
+-- microsemi

|
+-- designer.py

The vendor directories and tool files expand as they are added:

23

eda-log-file-warning-suppressor, Release 0.9.0

elfws
|
+-- vendor

|
+-- mentor_graphics
| |
| +-- precision.py
| +-- questa_sim.py
|
+-- microsemi
| |
| +-- designer.py
|
+-- synopsys

|
+-- synplify_pro.py
+-- design_compiler.py

ELFWS will search the elfws->vendor directory for all directories. It will then search each of those directories for
tool files. ELFWS will pass the log file to each tool file and ask if the log file is from that tool. If the tool file does not
recognize the log file, then ELFWS moves to the next tool. If the tool file does recognize the log file, then ELFWS
uses the extract_warnings function to parse out the warnings in the file.

24 Chapter 8. Adding Vendor Tools

CHAPTER 9

Vendor Tool File

The Vendor Tool file performs the initial parsing of warnings from the log file. It must contain the following functions:

• get_vendor()

• get_tool_name()

• is_logfile()

• extract_warnings()

9.1 imports

To support the extract_warnings function, the following imports must be included:

from elfws import warning
from elfws import warning_list

9.2 get_vendor

This function just returns a list of strings listing the vendor. A list was choosen to manage company acquisitions. The
most recent company name should be first in the list.

def get_vendor():
return ['Microsemi', 'Actel']

9.3 get_tool_name

This function returns a string with the name of the tool.

25

eda-log-file-warning-suppressor, Release 0.9.0

def get_tool_name():
return 'designer'

9.4 is_logfile

This function is responsible for parsing the logfile and determining whether it is a logfile for the tool. There are
typically some unique strings in the beginning of the logfile that identifies which tool generated it. The function must
return a boolean.

def is_logfile(lFile):
for iLineNumber, sLine in enumerate(lFile):

if sLine.startswith('Microsemi Libero Software'):
return True

if iLineNumber == 10:
return False

return False

9.5 extract_warnings

This function parses the logfile for warnings. It returns a warning_list object with a collection of warning objects.

The following code looks for lines starting with Warning and then proceeds to handle warnings without IDs and
multiline warnings.

def extract_warnings(lFile):
oReturn = warning_list.create()

fWarningFound = False
for iLineNumber, sLine in enumerate(lFile):

Clear the warning found flag
if not sLine.startswith(' ') and fWarningFound:

fWarningFound = False
oReturn.add_warning(oWarning)

if sLine.startswith(' ') and fWarningFound:
oWarning.message += ' ' + sLine.strip()

if sLine.startswith('Warning:'):
fWarningFound = True
iColon1Index = sLine.find(':')
iColon2Index = sLine.find(':', iColon1Index+1)
if iColon2Index == -1:

sID = 'NO_ID'
sMessage = sLine[iColon1Index+1:].strip()

else:
sID = sLine[iColon1Index+1:iColon2Index].strip()
sMessage = sLine[iColon2Index+1:].strip()
if ' ' in sID:

sID = 'NO_ID'
sMessage = sLine[iColon1Index+1:].strip()

oWarning = warning.create(sID, sMessage, None, iLineNumber + 1)
return oReturn

26 Chapter 9. Vendor Tool File

eda-log-file-warning-suppressor, Release 0.9.0

Note: Use existing functions from other vendor tools as a basis to generate new ones.

9.5. extract_warnings 27

eda-log-file-warning-suppressor, Release 0.9.0

28 Chapter 9. Vendor Tool File

CHAPTER 10

Contributing

I welcome any contributions to this project.

There are several ways to contribute:

1. Bug reports

2. Code base improvements

3. Feature requests

4. New vendor warning suppressions

10.1 Bug Reports

If you run into anything that is not handled correctly, please submit an issue. When creating the issue, use the bug
label to highlight it. Fixing bugs is prioritized over feature enhancements.

10.2 Code Base Improvements

My Python journey is never ending and I learn new things with each project. I run the code through Codacy and Code
Climate, and they are very helpful. However, I would appreciate any suggestions to improve the code base.

Create an issue and use the refactor label for any code which could be improved.

10.3 Feature Requests

Let me know if there is anything I could add to make ELFWS easier to use. Create an issue with the enhancement
label.

29

eda-log-file-warning-suppressor, Release 0.9.0

10.4 New Vendor Warning Suppresssions

I plan to update ELFWS as I run into tools where I need to suppress warnings. If there is a tool that is currently not
supported, then create an issue with the Vendor Tool label.

Provide a small sample showing the format of the warnings and I can add it or show you how to add it.

30 Chapter 10. Contributing

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

31

	Overview
	Why ELFWS?
	Key Benefits
	Key Features

	Installation
	PIP
	Git Hub

	Usage
	create
	report
	show
	suppress
	version

	Evaluating Warnings
	Evaluate
	Suppress
	Mitigate
	Investigate

	Suppression Rules
	Warning IDs
	Suppression Rule Fields
	Grouping Rules
	Options

	Theory of Operation
	Read suppression rule file
	Read logfile
	Determine vendor
	Load warning extractor
	Extract warnings from logfile
	Compare suppression rules against extracted warnings
	Report results

	Vendors
	Mentor Graphics
	Precision
	Quasta Lint

	Microsemi
	Designer

	Xilinx
	Vivado

	Adding Vendor Tools
	Directory Structure

	Vendor Tool File
	imports
	get_vendor
	get_tool_name
	is_logfile
	extract_warnings

	Contributing
	Bug Reports
	Code Base Improvements
	Feature Requests
	New Vendor Warning Suppresssions

	Indices and tables

